Home
:
Gallery
:
History
:
Uses
:
Behaviour
:
Maths
:
Forum
:
Propulsion
:
Links
:
Glossary
Maths
More Maths
Gyroscope Math Page
(feedback welcome)
NOTE: You cannot edit the light coloured fields. This page requires Javascript.
Notes and Reference Section
6.283185308 (approx) radians = 1 revolution
(2 * Pi radians = 1 revolution)
gyroscopic couple, C = I * W * Omega
Force on the bearings, F = (I * W * Omega) / L
Basic Gyroscope Measurements
Density of material
Radius (Meters)
Diameter (Meters)
(Radius * 2)
Circumference (Meters)
(2 * Radius * Pi)
Depth (Meters)
Volume (Meters Cubed)
(Pi * (Radius ^ 2) * Depth)
Mass (Kilograms)
(Volume * Density)
Pi
Cut-Away Measurements
Radius (Meters)
Diameter (Meters)
(Radius * 2)
Circumference (Meters)
(2 * Radius * Pi)
Depth (Meters)
Number of Cut-Aways
Volume of Cut-Aways (Meters Cubed)
(Pi * (Radius ^ 2) * Depth)
Mass of Cut-Aways (Kilograms)
(Volume * Density)
Gyroscope Measurements
(After Cut-Aways)
Volume of Gyroscope (Meters Cubed)
(Gyro volume - cutaways)
Mass of Gyroscope (Kilograms)
(Gyro mass - cutaways)
Inertia
Gyroscope Inertia (without cut-aways)
(Mass * (radius ^ 2) / 2)
Inertia Cut-Aways
(Mass * (radius ^ 2) / 2)
Omega (Gyroscope interia after cut-aways)
(without cutaways - cutaways)
Speed of Gyroscope
W (radians per second)
(rps * ((2 * pi))
Revolutions Per Minute (RPM)
Kilometers Per Hour (KPH)
(((rpm * circumference) / 1000) * 60)
Degrees Per Second
((rpm * 360) / 60)
Revolutions Per Second
(rpm / 60)
Speed of Main Structure
Degrees Change
Time in seconds
Radians Change
(degrees / (360 / (pi * 2))
Degrees Per Second
(degrees / seconds)
Revolutions Per Second
(dps / 360)
Revolutions Per Minute (RPM)
(rps * 60)
Omega (Radians per second)
(rps * ((2 * pi))
Details of Precession
C (Gyroscopic couple force)
(Inertia * W * Omega)
Force
Distance between bearings (Meters)
Force on bearings (Newton Meters)
(C / L)
Force on each bearing (Newton Meters)
((C / L) / 2)
Force on bearings (Kilograms)
((C / L) * 0.1)
Force on each bearing (Kilograms)
(((C / L) * 0.1 aprox) / 2)
Website. Copyright © 2025 Glenn Turner. All rights reserved.
site info
Do not copy without prior permission. Click here for
gyroscope products